I realised recently that it’s been about a month and a half since I posted. Woops! In my defence: I’ve been attempting to finish the 80 pages I need to write for this term’s coursework, while preparing presentations, and organising and attending conferences. It’s heaven: the days are chock-full of Philosophy!!!
I recently got to attend the Pacific APA, and had a blast. Luckily for me, I got to present my paper the very first day, only two hours after the conference began. After that, I was able to sit back and enjoy the show. I got to see Neal Tognazzini talk about moral responsibility and stage theory, Casey Karbowski talk about the argument from vagueness for unrestricted composition, and Danny Korman discuss naive (or, better: natural) ontology. And of course, there was JSchaff discussing Monism, Schroeder on desires, and six hours in one day about Relativism.
All of this was taking place between periods of hanging out with Philosophers at restaurants, bars, coffee shops, Portland’s famous bookstore, and even a music show. I’m delighted - I got to catch up with several of my friends, and meet a bunch of people as well. And I learned a lot! It struck me, as it usually does after conferences like this one, that we’re very lucky to have such a thriving community of hella-nice, wicked-smart people.
Something semi-amusing: I was scheduled to leave Portland Sunday the 26th, so (figuring I’d sleep on the plane) I let myself stay up all night Saturday. But my plane was overbooked, so I was given a $400 check and sent back to spend a few extra hours at the conference. It was fantastic, I got to go to three more talks! The only unfortunate part of the surprise was that, in my sleep-deprived state, I asked a really stupid question in a session about Lewis. My first question at an APA session, ever, and it was so bad. Even hazy and incoherent as I was, I could tell that much. Oh well, I suppose it could be worse: for instance, I could have asked a really bad question when not sleep deprived!
Usually after these conferences I go through withdrawls, moping around and such. But getting back to Rutgers, I found that the prospectives were already visiting! It was great to get to meet them: they’re all really smart, excited and talkative. I’m looking forward to hanging out with them (or, at least, with whoever I get to - I'm not sure how many will end up in this area) in the coming years.
For now, it’s down to work getting papers finished for classes, and a presentation prepared for later this month. Also, I’m taking the weekend off to go up to the University of Connecticut for a conference on conditionals - I’m excited to get to attend, it looks like a lot of fun!
As for some of what I’ve been working on: I recently finished a draft of a paper on the At-At account of motion. In the paper, I claim that we can’t accept the At-At account as a claim about what it means to move, since it gives the wrong results in cases where something spatially multilocated persists. Consider, for instance, a case where something is located at R1 at T1, then time-travels to R2 at T2, then time-travels back to R2 at T1, then skips ahead again to R1 at T2. Intuitively, this case involves a lot of motion. But there’s a relevantly similar case where an object is multilocated at T1, wholly located at both R1 and R2, and is also multilocated at T2 in the same way. It simply persists (though it’s temporally gappy) in R1 and in R2. Intuitively, there isn’t motion in this case. But the only thing we’ve changed between the cases is the causal relations the thing bears to itself at various regions. And the At-At account, in its elegant reduction of motion to something simple and non-mysterious, has no room for such considerations.
I’ve still got some work to do on the paper, looking at various responses to the case. (E.g., denying it’s possible, indexing motion to regions, and cashing out what we might need to appeal to if those responses don’t work.) And I also need to write out some of the benefits of making our account of motion sensitive to these extra considerations - for instance, our intuitions falter in some intermediate cases (e.g., when a thing is wholly at R1 at T1, and wholly at R1 at T2 and also wholly at R2 at T2. Does it move?), and I can give a nice explanation for why (namely, the case above is underdescribed; we need to know more about the relations the thing bears to itself at the various regions before we can tell whether it moves).
There's other stuff I'm thinking about as well, though I want to work on it more before I post on it. But I'm having tons of fun -- grad school is really incredible.
Alright, I'm off for the night. Best wishes on a great spring term!
Recent Comments